Javascript required
Skip to content Skip to sidebar Skip to footer

Section 6.3 2 Solution Linear Algebra Lays

Solutions for Chapter 6.3

Textbook: Linear Algebra and Its Applications
Edition: 5

Author: David C. Lay; Steven R. Lay; Judi J. McDonald
ISBN: 9780321982384

Chapter 6.3 includes 26 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Linear Algebra and Its Applications was written by and is associated to the ISBN: 9780321982384. This textbook survival guide was created for the textbook: Linear Algebra and Its Applications , edition: 5. Since 26 problems in chapter 6.3 have been answered, more than 118093 students have viewed full step-by-step solutions from this chapter.

  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

  • About us

    Team

    Careers

    Blog

  • Schools

    Subjects

    Textbook Survival Guides

  • Elite Notetakers

    Referral Program

    Campus Marketing Coordinators

    Scholarships

  • Contact

    FAQ

    Sitemap

Section 6.3 2 Solution Linear Algebra Lays

Source: https://studysoup.com/tsg/math/49/linear-algebra-and-its-applications/chapter/747/6-3